Assignment - III
 MATHEMATICS - III SEMESTER-IV (CS/IT), Paper Code: M401

Algebraic Structures

1) Prove that a group $\left(\mathrm{G},{ }^{*}\right)$ is commutative if and only if $(a * b)^{2}=a^{2} * b^{2}$, for all $a, b \in G$.
2) Show that in a group $\left(\mathrm{G},{ }^{*}\right),(a * b)^{-1}=b^{-1} * a^{-1}, \forall a, b \in G$.
3) Show that a group ($\mathrm{G},{ }^{*}$) is abelian iff $(a * b)^{-1}=a^{-1} * b^{-1}, \forall a, b \in G$.
4) Show that if every element of a group $(G, *)$ be its own inverse, then it is an abelian group. Is the converse true?
5) Let G be a group. If $a, b \in G$ such that $a^{4}=e$, the identity element of G and $a b=b a^{2}$, prove that $a=e$.
6) Let ($\mathrm{G},{ }^{*}$) be a group, $a^{5}=e \& a b a^{-1}=b^{2}$ for some $a, b \in G$. Find the order of b .
7) Let ($\mathrm{G},{ }^{*}$) be a group \& $a \in G, o(a)=24$. Find the order of a^{4}, a^{7}, a^{10}.
8) Show that for any two subgroups H and K of a group $\mathrm{G}, \mathrm{H} \cap \mathrm{K}$ is also a subgroup of G .
9) The subset H of a group (G, \circ) is defined by $\mathrm{H}=\{x \in G: x \circ g=g \circ x \forall g \in G\}$. Prove that H is a subgroup of G.
10) Define a cyclic group. Prove that every cyclic group is abelian (commutative).
11) Show that the group $\left(Z_{5},+\right)$, i.e. the additive group of all integers modulo 5 is cyclic. Find all generators of Z_{5}.
12) Prove that the order of each subgroup of a finite group is a divisor of the order of the group. (Lagrange's Theorem)
13) Let H be a subgroup of a group G . Show that H is normal in G if and only if $x h x^{-1} \in H$ $\forall h \in H, \forall x \in G$.
14) Define normal subgroup of a group. If G is a group and H is a subgroup of index 2 in G, prove that H is a normal subgroup of G.
15) Let $\mathrm{G}=\left\{\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right): a d \neq 0\right\}$ and $\mathrm{H}=\left\{\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right)\right\}$. Prove that H is a normal subgroup of the group G,
16) Let $\mathrm{A}=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 5 & 4\end{array}\right), \mathrm{B}=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 4 & 5 & 2\end{array}\right)$ be two permutations. Show that $\mathrm{AB} \neq \mathrm{BA}$.
17) Let H be a normal subgroup of a group G and G / H be the set of all cosets of H in G. Show that G / H forms a group under the composition

$$
(\mathrm{aH}) \cdot(\mathrm{bH})=(\mathrm{ab}) \mathrm{H} \text { for all } \mathrm{a}, \mathrm{~b} \in \mathrm{G} .
$$

18) Let $\mathrm{f}: \mathrm{G} \rightarrow G^{\prime}$ be a groups of homomorphism. Show that f is one-one if and only if $\operatorname{ker}(\mathrm{f})=\{\mathrm{e}\}$, where e is a unit element of G .
19) Let $\mathrm{f}: \mathrm{G} \rightarrow G^{\prime}$ be a groups of homomorphism. Show that (i) Imf is a subgroup of G^{\prime} and (ii)Kernel of f is a normal subgroup of G.
20) Let R be the additive group of real numbers and C^{*} be the multiplicative group of nonzero complex numbers. If $f: R \rightarrow C^{*}$ is a group of homomorphism defined by $f(x)=e^{2 \pi i x}$ for all $x \in R$, find the kernel of f.
21) Let $(\mathrm{R},+)$ be the group of real numbers under addition and $\left(\mathrm{R}^{+}\right.$,) be the group of positive real numbers under multiplication. Define $f: R \rightarrow R^{+}$by $f(a)=e^{a} \forall a \in R$. Show that f is an isomorphism from $(\mathrm{R},+)$ onto $\left(\mathrm{R}^{+}\right.$,).
22) Let ($\mathrm{Q},+$) be the additive group of rational numbers and $\left(\mathrm{Q}^{+}\right.$,) be the multiplicative group of positive rational numbers. Are these two groups isomorphic?
23) Prove that the set of all even integers form a commutative ring.
24) Prove that the intersection of two subrings is a subring.
25) If in a ring R with unity, $(x y)^{2}=x^{2} y^{2}$ for all $x, y \in R$, then show that R is commutative.
26) Prove that the ring of matrices of the form $\left(\begin{array}{ll}x & y \\ -y & x\end{array}\right)$ of real numbers is a field.
27) Prove that every finite integral domain is a field.
28) Let R and S be two rings and $f: R \rightarrow S$ be a ring homomorphism. Show that kernel of f is a subring of R .
